如图,直线l1的函数表达式为y=-3x+3且直线l与x轴交于点D,直线l2经过点A,B,与直线l1交于点C 1.求点D坐标 2如图,直线l1的函数表达式为y=-3x+3且直线l与x轴交于点D,直线l2经过点A,B,与直线l1交于点C1.求点D坐标2.就直线l2的函数解析式3.求三角形ADC的面积
如图,直线l1的函数表达式为y=-3x+3且直线l与x轴交于点D,直线l2经过点A,B,与直线l1交于点C 1.求点D坐标 2
如图,直线l1的函数表达式为y=-3x+3且直线l与x轴交于点D,直线l2经过点A,B,与直线l1交于点C
1.求点D坐标
2.就直线l2的函数解析式
3.求三角形ADC的面积
(1)已知l1的解析式,令y=0求出x的值即可;
(2)设l2的解析式为y=kx+b,由图联立方程组求出k,b的值;
(3)联立方程组,求出交点C的坐标,继而可求出S△ADC;
(4)△ADP与△ADC底边都是AD,面积相等所以高相等,ADC高就是C到AD的距离.
(1)由y=-3x+3,令y=0,得-3x+3=0,
∴x=1,
∴D(1,0);
(2)设直线l2的解析表达式为y=kx+b,
由图象知:x=4,y=0;
x=3,y=-3/2,
∴4k+b=0 3k+b=-3/2,
∴k=3/2 b=-6,
∴直线l2的解析表达式为y=3/2x-6;
(3)由y=-3x+3 y=3/2x-6,
解得x=2 y=-3,
∴C(2,-3),
∵AD=3,
∴S△ADC=1/2×3×|-3|=9/2;
(4)△ADP与△ADC底边都是AD,面积相等所以高相等,△ADC高就是C到AD的距离,即C纵坐标的绝对值=|-3|=3,
则P到AD距离=3,
∴P纵坐标的绝对值=3,点P不是点C,
∴点P纵坐标是3,
∵y=1.5x-6,y=3,
∴1.5x-6=3
x=6,
所以P(6,3).
(1)当y=0时,-3x+3=0,得x=1,所以D:(1,0)
(2)设该函数为Y=KX+B
依题意得,0=4K+B,-3/2=3K+B
解得K=3/2,B=-6
即,Y=3/2X-6
(3)l2:y=3/2x-6,
3/2x-6=-3x+3
x=2
代入l2,得y=-3
所以C:(2,-3)
S=(4-1)*3/2=9/2
(1)已知l1的解析式,令y=0求出x的值即可;
(2)设l2的解析式为y=kx+b,由图联立方程组求出k,b的值;
(3)联立方程组,求出交点C的坐标,继而可求出S△ADC.(1)由y=-3x+3,令y=0,得-3x+3=0,
∴x=1,
∴D(1,0);
(2)设直线l2的解析表达式为y=kx+b,
由图象知:x=4,y=0;
x=3,y=-32,
∴4k+b=03k+b=-
32,
∴k=
32b=-6,
∴直线l2的解析表达式为 y=
32x-6;
(3)由 y=-3x+3y=
32x-6,
解得 x=2y=-3,
∴C(2,-3),
∵AD=3,
∴S△ADC=12×3×|-3|=92.
直线l1:y=-3x+3与x轴交于点D,
当y=0时,-3x+3=0,解得,x=1
所以点D的坐标是(1,0)
(2)由图可知直线l2过点A(4,0)、B(3,-3/2),
设其解析式为y=kx+b,把A、B的坐标代入得:
0=4k+b -3/2=3k+b
解得k=3/2,b=-6
所以直线l2的解析式是y=3x/2-6。
(3)由点A(4,0)和点D(1,0),得AD=3
点C是直线l1和l2的交点,即y=-3x+3. y=3x/2-6
解得,x=2,y=-3
所以点C(2,-3)到x轴的距离是|-3|=3
所以△ADC的面积是1/2×3×3=9/2
1、当y=o ,x=1 D(1,0)
2、设y=kx+b,代入点A(4,0),B(3,-3/2)
4k+b=0
3k+b=-3/2
解得k=3/2 b=-6
y=3x/2-6
3、3X/2-6=-3X+3
X=2 Y=-3 点C坐标为(2,-3)
S=(4-1)*3/2=9/2
(1)直线l1:y=-3x+3与x轴交于点D,
当y=0时,-3x+3=0,解得,x=1
所以点D的坐标是(1,0)
(2)由图可知直线l2过点A(4,0)、B(3,-32),
设其解析式为y=kx+b,把A、B的坐标代入得:
0=4k+b-32=3k+b 解得k=32b=-6
所以直线l2的解析式是y=32x-6。
(3)由点A(4,0)和点D(1,0),得AD=3
点C是直线l1和l2的交点,即
y=-3x+3y=32x-6 解得,x=2y=-3
所以点C(2,-3)到x轴的距离是|-3|=3
所以△ADC的面积是12×3×3=92