1/(x+1)+1/(x+2)=1/x+1/(x+3)

问题描述:

1/(x+1)+1/(x+2)=1/x+1/(x+3)

1/(x+1)+1/(x+2)=1/x+1/(x+3)1/(x+2)-1/(x+3)=1/x-1/(x+1)[(x+3)-(x+2)]/[(x+2)(x+3)]=[(x+1)-x]/[x(x+1)]1/[(x+2)(x+3)]=1/[x(x+1)]x(x+1)=(x+2)(x+3)x^2+x=x^2+5x+6x-5x=6-4x=6x=-1.5经检验x=-1.5是原方程的解...