(2-3X+X^2)^5=a0+a1X++a2X^2…+a10x^10,则a1=
问题描述:
(2-3X+X^2)^5=a0+a1X++a2X^2…+a10x^10,则a1=
答
(2-3X+X^2)^5=(X-1)五次*(X-2)五次
A1X是(X-1)五次的0次*(X-2)五次的1次项+(X-1)五次的1次项*(X-2)五次的0次项
A1X=(1的五次)(-5*2的4次*X)+(-5*1的4次*X)(2 的5次)
=-80X-160X
A1=-240