如果关于字母X的二次多项式-3x^2+mx+nx^2-x+3的值与x的取值无关,求代数式-m^2-(1/2)[3n^2-2(m^2-n^2)]+6的
问题描述:
如果关于字母X的二次多项式-3x^2+mx+nx^2-x+3的值与x的取值无关,求代数式-m^2-(1/2)[3n^2-2(m^2-n^2)]+6的
答
-3x^2+mx+nx^2-x+3
=(-3+n)x²+(m-1)x+3
n=3,m=1
-m^2-(1/2)[3n^2-2(m^2-n^2)]+6
=-m^2-(1/2)[3n^2-2m^2+2n^2)]+6
=-m^2-(1/2)[5n^2-2m^2]+6
=-m^2-5/2n^2+m^2+6
=-5/2n^2+6
=-45/2+6
=-33/2
答
-3x^2+mx+nx^2-x+3的值与x的取值无关
(-3+n)x²+(m-1)x+3
-3+n=0 m-1=0
n=3 m=1
-m^2-(1/2)[3n^2-2(m^2-n^2)]+6
=-m^2-(1/2)[3n^2-2m^2+2n^2)]+6
=-m^2-(1/2)(5n^2-2m^2)+6
=-m^2-5n^2/2+m^2+6
=-5n^2/2+6 其中n=3
=-5×3²/2+6
=-22.5+6
=-16.5