数学题(x-4)/(x-3)+(x-6)/(x-5)=(x-8)/(x-7)+(x-10)/(x-9)解方程,(x-4)/(x-3)+(x-6)/(x-5)=(x-8)/(x-7)+(x-10)/(x-9)解方程,好像有两种解

问题描述:

数学题(x-4)/(x-3)+(x-6)/(x-5)=(x-8)/(x-7)+(x-10)/(x-9)解方程,
(x-4)/(x-3)+(x-6)/(x-5)=(x-8)/(x-7)+(x-10)/(x-9)解方程,好像有两种解

[1-1/(x-3)]+[1-1/(x-5)]=[1-1/(x-7)]+[1-1/(x-9)]
1/(x-3)-1/(x-7)=1/(x-9)-1/(x-5)
-4/[(x-3)(x-7)]=4/[(x-9)(x-5)]
(x-9)(x-5)+(x-3)(x-7)=0
2x^2-24x+66=0
x^2-12x+33=0

[(x-3)-1]/(x-3)+[(x-5)-1]/(x-5)=[(x-7)-1]/(x-7)+[(x-9)-1]/(x-9)
得1-1/(x-3)+1-1/(x-5)=1-1/(x-7)+1-1/(x-9)
得1/(x-3)-1/(x-7)=1/(x-9)-1/(x-5)
得-1/(x-3)(x-7)=1/(x-9)(x-5)
得x²-12x+33=0

(x-4)/(x-3)+(x-6)/(x-5)=(x-8)/(x-7)+(x-10)/(x-9)(x-4)/(x-3)-(x-10)/(x-9)=(x-8)/(x-7)-(x-6)/(x-5)[(x-4)(x-9)-(x-10)(x-3)]/[(x-3)(x-9)]=[(x-8)(x-5)-(x-6)(x-7)]/[(x-5)(x-7)]6/(x^2-12x+27)=-2/(x^2-12x+35)...

观察可知,分子总比分母小1。
所以x-4=(x-3)-1;x-6=(x-5)-1
所以分式左边=2-1/(x-3)-1/(x-5)
然后同理右边化简