已知a、b、c均为正整数,且满足a2+b2=c2,又a为质数.证明:(1)b与c两数必为一奇一偶;(2)2(a+b+1)是完全平方数.

问题描述:

已知a、b、c均为正整数,且满足a2+b2=c2,又a为质数.
证明:(1)b与c两数必为一奇一偶;(2)2(a+b+1)是完全平方数.

证明:(1)∵a2+b2=c2
∴a2=c2-b2=(c+b)(c-b),
因为a是质数,而(c+b)和(c-b)不可能都等于a,所以c-b=1,c+b=a2,得到c=b+1,
则b,c是两个连续的正整数,
∴b与c两数必为一奇一偶;
(2)将c=b+1代入原式得:
a2+b2=(b+1)2=b2+2b+1
得到a2=2b+1
则a2+2a+1=2b+1+2a+1=2(a+b+1)
左边等于(a+1)2是一个完全平方数,
所以右边2(a+b+1)是一个完全平方数,得证.
答案解析:从a2+b2=c2的变形入手;a2=c2-b2,根据a是质数,则a2一定是只有因数1,a和a2,运用质数、奇偶数性质证明.
考试点:质数与合数.
知识点:本题主要考查了质数的性质,正确理解若a是质数,则a2一定是只有因数1,a和a2,是解决本题的关键.