P是圆O上的一动点,弦AB=根号3,PC是角APB的平分线,角BAC=30度.求当角PAC=?时四边形PACB面积最大.最大是几?

问题描述:

P是圆O上的一动点,弦AB=根号3,PC是角APB的平分线,角BAC=30度.求当角PAC=?时四边形PACB面积最大.最大是几?
用简单一些的方法

(1).
∵PC是∠APB的平分线
∴∠APC=∠CPB
∴弧AC=弧BC
∵∠BAC=30°
∴∠ABC=30°
∴∠ACB=120°
∴∠APB=60°
设∠PAB=α,则∠PBA=120°-α
由正弦定理得
2R=AB/sin60°=2
∴PB=2R·sinα=2sinα
∴S△PAB=1/2*AB*PB*sin(120°-α)=√3*sinα*sin(120°-α)=-√3*/2[(cos120°-cos(2α-120°)]=(√3/2)*cos(2α-120°)-√3/4
∴α=60°时,S△PAB面积最大,为3√3/4
∵S△PAB=1/2AB*BC*sin30°=1/2AB*2R*sin30°*sin30°=√3/4为常量,不因P的位置改变.
∴∠PAC=90°时,四边形PACB有最大面积,为√3