因式分解x^2y^2z^2+x^2z+y^2z+1
问题描述:
因式分解x^2y^2z^2+x^2z+y^2z+1
答
法1:
(x^2)(y^2)(z^2)+(x^2)z+(y^2)z+1
=[(x^2)z] *[ (y^2)z]+(x^2)z+(y^2)z+1
=[(x^2)z+1][(y^2)z+1]
法2:
(x^2)(y^2)(z^2)+(x^2)z+(y^2)z+1
=(x^2*y^2)z^2+(x^2+y^2)z+1
=(x^2z+1)(y^2+1) (十字相乘法)