设f(x)=x2+bx+c对任意实数t,都有f(2+t)=f(2-t),那么( ) A.f(2)<f(1)<f(4) B.f(1)<f(2)<f(4) C.f(2)<f(4)<f(1) D.f(4)<f(2)<f(1)
问题描述:
设f(x)=x2+bx+c对任意实数t,都有f(2+t)=f(2-t),那么( )
A. f(2)<f(1)<f(4)
B. f(1)<f(2)<f(4)
C. f(2)<f(4)<f(1)
D. f(4)<f(2)<f(1)
答
∵对任意实数t都有f (2+t)=f (2-t),
∴f(x)的对称轴为x=2,而f(x)是开口向上的二次函数故可画图观察,
可得f(2)<f(1)<f(4),
故选A.