当x>1时,求y=(2x²-2x+1)/(x-1)的最小值

问题描述:

当x>1时,求y=(2x²-2x+1)/(x-1)的最小值

y=[2(x²-2x+1)+2(x-1)+1]/(x-1)=[2(x-1)+1/(x-1)]+2∵x>1∴x-1>0 2(x-1)>0 1/(x-1)>0∴2(x-1)+1/(x-1)≥2√[2(x-1)×1/(x-1)]=2√2(2(x-1)=1/(x-1)时,即x=1+√2/2时,y取最小值2√2