设f(x)在[0,a]上可积且f(x)>0,任意x>0,又满足方程f(x)=(定积分(0~x)f(t)dt)^(1/2))(0《x《a,求f(x)

问题描述:

设f(x)在[0,a]上可积且f(x)>0,任意x>0,又满足方程f(x)=(定积分(0~x)f(t)dt)^(1/2))(0《x《a,求f(x)

由变上限积分连续知f连续,再由f连续知f可微,于是f^2=积分(0到x)f(t)dt,微分得
2ff'=f,f不为0,于是f‘=1/2,f=1/2x+c,又f(0)=0,f=1/2x.