已知向量a=(sinx,2),b=(1,-cosx),且a垂直b,求tanx的值,求tan(x-牌/4)的值

问题描述:

已知向量a=(sinx,2),b=(1,-cosx),且a垂直b,求tanx的值,求tan(x-牌/4)的值

由a垂直b可知:向量a、b的数量积为零,则有
sinx*1+2*(-cosx)=0=>sinx-2cosx=0,所以tanx=sinx/cosx=2;
根据tan(A+B)=(tanA+tanB)/(1-tanAtanB)将
tan(x-π/4)展开有tan[x+(-π/4)]=(tanx-1)/(1+tanx),然后将tanx带入上式,可以得到
tan(x-π/4)=1/3