∫1/(x^2+9)dx上限3下限0
问题描述:
∫1/(x^2+9)dx上限3下限0
答
用换元积分法,取x=3t,则原式化为:
∫1/(x^2+9)dx=(1/3)×∫1/(t^2+1)dt(上限1,下限0)
=(1/3)(arctan1-arctan0)=派/12