(x-e^x)上限0下限-1的微积分=

问题描述:

(x-e^x)上限0下限-1的微积分=

∫(x-e^x)dx,[x:-1→0]
=(x^2)/2-e^x+C,[x:-1→0]
=[(0)^2]/2-e^(0)-{[(-1)^2]/2-e^(-1)}
=-1-1/2+1/e
=(1/e)-3/2

=(1/2x的平方-e^x)上限0下限-1
=-1-(1/2-1/e)
=-3/2+1/e

∫(x-e^x)dx,[x:-1→0]
=∫xdx-∫(e^x)dx,[x:-1→0]
=(x^2)/2-e^x+C,[x:-1→0]
=[(0)^2]/2-e^(0)-{[(-1)^2]/2-e^(-1)}
=-1-1/2+1/e
=(1/e)-3/2