关于函数极限的题目 大一的f(x)在R上可导,lim(f(x)+xf'(x))=L(x 趋于无穷大时), 证明limf(x)=L( x趋于无穷大时)
问题描述:
关于函数极限的题目 大一的
f(x)在R上可导,lim(f(x)+xf'(x))=L(x 趋于无穷大时), 证明limf(x)=L( x趋于无穷大时)
答
对已知条件两边同取积分,得到lim(∫f(x)dx+∫xf'(x)dx)=∫Ldx
lim(∫f(x)dx+∫xdf(x))=lim(∫f(x)dx+xf(x)-∫f(x)dx)=limxf(x)=Lx
limf(x)=L
答
也能做~
因为lim(f(x)+xf'(x))=L可以写成lim(x*f(x))!=L
所以对于任意的a存在一个M当x>M时有L-a