一个数学微分方程题目.(x+1)y'+1=2(e的-y次方)求他的通解
问题描述:
一个数学微分方程题目.
(x+1)y'+1=2(e的-y次方)
求他的通解
答
>> dsolve('(x+1)*Dy+1=2*exp(-y)','x')
ans =
-log((x+1)/(-1+2*x*exp(C1)+2*exp(C1)))-C1
答
(x+1)(dy/dx) = (2exp(-y)-1)
dy/[2exp(-y)=1] = dx/(x+1)
exp(y)dy/(2-exp(y)) = dx/(x+1)
解为-ln[2-exp(y)]=ln(x+1) + C1
(x+1)[2-exp(y)]=C