limx->0 1/x(a/x-b/sinx)=-1/6求常数a,b 答案为a=b=1,
问题描述:
limx->0 1/x(a/x-b/sinx)=-1/6求常数a,b 答案为a=b=1,
答
limx->0 1/x(a/x-b/sinx)=lim (asinx-bx)/(sinx*x²)=lim(asinx-bx)/x^3 再运用罗比达法则
=lim (acosx-b)/3x² 极限存在,所以a=b
=lim-asinx/6x =-a/6 =-1/6
所以a=1 b=a=1