求下列曲线的渐近线:(1) y=x^2/(x^2+2x-3) (2) y=(x^2-3x+2)/(1-x^2)
问题描述:
求下列曲线的渐近线:(1) y=x^2/(x^2+2x-3) (2) y=(x^2-3x+2)/(1-x^2)
答
y=x²/(x²+2x-3)
lim
=lim
=lim
=1
y=x²/(x²+2x-3)的水平渐近线为y=1
lim
=lim
当x²+2x-3=0即x0=-3或1时,lim
y=x²/(x²+2x-3)的铅直渐近线为x=-3和x=1
lim
=lim
=lim
=lim
=0
y=x²/(x²+2x-3)没有斜渐近线
y=(x²-3x+2)/(1-x²)
lim
=lim
=lim
=-1
y=(x²-3x+2)/(1-x²)的水平渐近线为y=-1
lim
=lim
当1-x²=0即x0=-1或1时,lim
y=(x²-3x+2)/(1-x²)的铅直渐近线为x=-1和x=1
lim
=lim
=lim
=0
y=(x²-3x+2)/(1-x²)没有斜渐近线
若lim
若lim
若lim