2001*20022002-2002*20012001等于多少?
问题描述:
2001*20022002-2002*20012001等于多少?
答
设a=2001,则2002=a+1
原式=a[1000(a+1)+a+1]-(a+1)(1000a+a)
=a[1001(a+1)]-(a+1)*1001a
=1001a(a+1)-1001a(a+1)
=0
答
2001*20022002-2002*20012001=2001*20022002-(2001+1)*20012001
=2001*20022002-2001*20012001-20012001
=2001*(20022002-20012001)-20012001
=2001*10001-20012001
=0
答
0,
首先20022002-20012001=10001
过程如下:
2001*20022002-2002*20012001
=2001*(20012001+10001)-(2001+1)*20012001
=2001*20012001+2001*10001-2001*20012001-20012001
=2001*20012001-2001*20012001+2001*10001-20012001
=0+2001*10001-20012001
=0+20012001-20012001
=0+0
=0
答
原式=2001*2002*10001-2002*2001*10001=0
答
a(a+1)^2-a^2(a+1)
=a^3+2a^2+a-a^3-a^2
=a^2+a
=a(a+1)
=2011*(2011+1)
=2011*2012
=4044132