11×4+14×7+17×10+…+1(3n−2)(3n+1)=(  )A. n3n+1B. n+13n+1C. 2n−13n+1D. 2n−23n+1

问题描述:

1
1×4
+
1
4×7
+
1
7×10
+…+
1
(3n−2)(3n+1)
=(  )
A.
n
3n+1

B.
n+1
3n+1

C.
2n−1
3n+1

D.
2n−2
3n+1

原式=

1
3
(1-
1
4
)+
1
3
1
4
-
1
7
)+…+
1
3
1
3n−2
-
1
3n+1
)=
1
3
[(1-
1
4
)+(
1
4
-
1
7
)+…+(
1
3n−2
-
1
3n+1
)]=
1
3
(1-
1
3n+1
)=
n
3n+1

故选A.
答案解析:根据分式的性质,有
1
1×4
=
1
3
(1-
1
4
),
1
4×7
=
1
3
1
4
-
1
7
),…
1
(3n−2)(3n+1)
=
1
3
1
3n−2
-
1
3n+1
)成立,则可得原式=
1
3
(1-
1
4
)+
1
3
1
4
-
1
7
)+…+
1
3
1
3n−2
-
1
3n+1
),化简可得答案.
考试点:数列的求和.
知识点:本题考查数列的求和,常见方法有错位相减法、分组求和法、裂项相消法等,注意结合数列的特点选择对应的方法.