11×4+14×7+17×10+…+1(3n−2)(3n+1)=( )A. n3n+1B. n+13n+1C. 2n−13n+1D. 2n−23n+1
问题描述:
+1 1×4
+1 4×7
+…+1 7×10
=( )1 (3n−2)(3n+1)
A.
n 3n+1
B.
n+1 3n+1
C.
2n−1 3n+1
D.
2n−2 3n+1
答
原式=
(1-1 3
)+1 4
(1 3
-1 4
)+…+1 7
(1 3
-1 3n−2
)=1 3n+1
[(1-1 3
)+(1 4
-1 4
)+…+(1 7
-1 3n−2
)]=1 3n+1
(1-1 3
)=1 3n+1
;n 3n+1
故选A.
答案解析:根据分式的性质,有
=1 1×4
(1-1 3
),1 4
=1 4×7
(1 3
-1 4
),…1 7
=1 (3n−2)(3n+1)
(1 3
-1 3n−2
)成立,则可得原式=1 3n+1
(1-1 3
)+1 4
(1 3
-1 4
)+…+1 7
(1 3
-1 3n−2
),化简可得答案.1 3n+1
考试点:数列的求和.
知识点:本题考查数列的求和,常见方法有错位相减法、分组求和法、裂项相消法等,注意结合数列的特点选择对应的方法.