用10块长7厘米、宽5厘米、高3厘米的长方体积木,拼成一个长方体,这个长方体的表面积最小是多少?

问题描述:

用10块长7厘米、宽5厘米、高3厘米的长方体积木,拼成一个长方体,这个长方体的表面积最小是多少?

要使拼成的长方体表面积最小,关键是把比较大的面隐藏起来,即把7×5的面隐藏,得到如下图的长方体:

该长方体长为5×2=10厘米,宽为7厘米,高为3×5=15厘米;
则长方体的表面积:
(15×10+15×7+10×7)×2,
=325×2,
=650(平方厘米);
答:这个长方体的表面积最小是650平方厘米.
答案解析:要使表面积最小,关键是把比较大的面隐藏起来,即把7×5的面隐藏起来,得到两排五块重叠摆法,据此列式求出即可.
考试点:图形的拆拼(切拼);长方体和正方体的表面积;最大与最小.


知识点:解答这个题目的关键是考虑面积大的一个面多重叠,要使表面积最小,就要把比较大的面隐藏起来.