已知函数f(x)=10x−10−x10x+10−x,判断f(x)的奇偶性和单调性.

问题描述:

已知函数f(x)=

10x10−x
10x+10−x
,判断f(x)的奇偶性和单调性.

(1)已知函数f(x)=

10x10−x
10x+10−x
=
102x−1
102x+1
,x∈R

f(x)=
10−x10x
10−x+10x
=
102x−1
102x+1
=−f(x),x∈R

∴f(x)是奇函数
(2)f(x)=
102x−1
102x+1
,x∈R
,设x1,x2∈(-∞,+∞),且x1<x2
f(x1) −f(x2) =
102x1−1
102x1+1
102x2−1
102x2+1
=
2(102x1102x2)
(102x1+1)(102x2+1)
2(100x1100x2)
(102x1+1)(102x2+1)

因为x1<x2,所以100x1100x2,所以f(x1)-f(x2)<0,即f(x1)<f(x2),
∴f(x)为增函数.
答案解析:(1)用奇偶性定义判断,先看定义域,再探讨(x)与f(-x)的关系.
(2)用单调性定义判断,思路是,在区间上任取两个变量,且界定大小,再作差变形看符号.
考试点:函数奇偶性的判断.
知识点:本题主要考查用定义来判断函数的奇偶性和单调性,在判断奇偶性时要先看定义域,再看f(x)与f(-x)关系,在判断单调性时要注意变量的任意性.