在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示:抛物线y=2ax2+ax-32经过点B.(1)写出点B的坐标______;(2)求抛物线的解析式;(3)若三角板ABC从点C开始以每秒1个单位长度的速度向x轴正方向平移,求点A落在抛物线上时所用的时间,并求三角板在平移过程扫过的面积;(4)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.
在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示:抛物线y=2ax2+ax-
经过点B.3 2
(1)写出点B的坐标______;
(2)求抛物线的解析式;
(3)若三角板ABC从点C开始以每秒1个单位长度的速度向x轴正方向平移,求点A落在抛物线上时所用的时间,并求三角板在平移过程扫过的面积;
(4)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.
(1)过B作BD⊥x轴于D;∵∠BCA=90°,∴∠BCD=∠CAO=90°-∠ACO;又∵BC=AC,∠BDC=∠AOC=90°,∴△BDC≌△COA;∴AO=DC=2,BD=OC=1,∴B(-3,1).(2)由于抛物线过B点,则有:2a×9+(-3)•a-32=1,解得a=16...
答案解析:(1)由于△ABC是等腰Rt△,若过B作BD⊥x轴于D,易证得△BCD≌△CAO,则BD=OA=2,BD=OC=1,即可求出B点坐标为:B(-3,1).
(2)将B点坐标代入抛物线的解析式中,即可求出待定系数a的值,也就求得了抛物线的解析式.
(3)设平移后的三角形为△A′B′C′,由于是沿x轴正方向平移,所以A、A′的纵坐标不变,且A′在抛物线的图象上,由此可求出A′的坐标,即可求出AA′,CC′的距离,进而可求出平移过程所用的时间;
那么扫过部分的面积=△ABC的面积+▱AA′C′C的面积.
(4)此题要分两种情况进行讨论:
①以C为直角顶点,AC为直角边;可求出直线BC的解析式,联立抛物线的解析式即可求出P点坐标,然后判断CP是否与AC相等即可.
②以A为直角顶点,AC为直角边,方法同①.
考试点:二次函数综合题.
知识点:此题考查了等腰直角三角形的性质和判定、全等三角形的判定和性质、二次函数解析式的确定、函数图象交点、图形面积求法等知识,需注意的是(4)题应考虑到分别以A、C为直角顶点两种情况,不要漏解.