如图甲所示,在△ABC中,AB=AC,在底边BC上有任意一点P,则P点到两腰的距离之和等于定长(腰上的高),即PD+PE=CF,若P点在BC的延长线上,那么请你猜想PD、PE和CF之间存在怎样的等式关系?写出你的猜想并加以证明.

问题描述:

如图甲所示,在△ABC中,AB=AC,在底边BC上有任意一点P,则P点到两腰的距离之和等于定长(腰上的高),即PD+PE=CF,若P点在BC的延长线上,那么请你猜想PD、PE和CF之间存在怎样的等式关系?写出你的猜想并加以证明.

我的猜想是:PD、PE、CF之间的关系为PD=PE+CF.理由如下:
连接AP,则S△PAC+S△CAB=S△PAB
∵S△PAB=

1
2
AB•PD,S△PAC=
1
2
AC•PE,S△CAB=
1
2
AB•CF,
又∵AB=AC,
∴S△PAC=
1
2
AB•PE,
1
2
AB•PD=
1
2
AB•CF+
1
2
AB•PE,
1
2
AB(PE+CF)=
1
2
AB•PD,
∴PD=PE+CF.
答案解析:猜想:PD、PE、CF之间的关系为PD=PE+CF.根据∵S△PAB=
1
2
AB•PD,S△PAC=
1
2
AC•PE,S△CAB=
1
2
AB•CF,S△PAC=
1
2
AC•PE,
1
2
AB•PD=
1
2
AB•CF+
1
2
AC•PE,即可求证.
考试点:等腰三角形的性质;三角形的面积.

知识点:本题考查了等腰三角形的性质及三角形的面积,难度适中,关键是先猜想出PD、PE、CF之间的关系为PD=PE+CF再证明.