一道讨论连续性和可导性的高数题(很基础的)为分段函数:y=(x^2)*sin(1/x),x不等于00,x=0问其连续性和可导性,要过程讨论证明,
问题描述:
一道讨论连续性和可导性的高数题(很基础的)
为分段函数:y=
(x^2)*sin(1/x),x不等于0
0,x=0
问其连续性和可导性,要过程讨论证明,
答
该函数在任意一点处都连续,也都可导.当x不等于0时,函数显然是连续的.又因为lim(x→0)
f(x)=lim(x→0)(x^2)*sin(1/x)=0=f(0),所以f(x)在点x=0处连续,故f(x)在任意一点处都连续.当x不等于0时,f(x)显然是可导的,又因为lim(△x→0)(f(0+△x)-f(0))/△x=(△x)²sin(1/△x)/△x=lim(△x→0)(△x)sin(1/△x)=0,所以f(x)在点x=0处可导,故f(x)在任意一点处都可导.(但其导函数不连续)