已知S(x)=a1x+a2x^2+...+anx^n,且a1,a2,...,an组成等差数列,n为正偶数设S(1)=n^2,S(-1)=n(1)求数列{an}的通项公式(2)证明S(1/2)扫码下载作业帮拍照答疑一拍即得
问题描述:
已知S(x)=a1x+a2x^2+...+anx^n,且a1,a2,...,an组成等差数列,n为正偶数
设S(1)=n^2,S(-1)=n
(1)求数列{an}的通项公式
(2)证明S(1/2)
扫码下载作业帮
拍照答疑一拍即得
答
(1)
因a1,a2,...,an组成等差数列,所以设公差为d,
又因S(1)=n^2,则
a1+a2+...+an=n^2,则由等差数列求和公式Sn=[2na1+n(n-1)d]/2可得
[2na1+n(n-1)d]/2=n^2,化简得
a1+d(n-1)/2=n,即a1=n(1-d/2)+d/2,
因为a1是等差数列的首项,所以和n无关,故1-d/2=0,即d=2
所以a1=1,得an=a1+(n-1)d,带入an=1+(n-1)*2,
得{an}的通项公式为 an=2n-1;
(2)
由(1)可得S(x)=x+3x^2+5x^3+...+(2n-1)x^n,则
S(1/2)=(1/2)+3*(1/2)^2+5*(1/2)^3+...+(2n-1)*(1/2)^n,
(1/2)S(1/2)=(1/2)^2+3*(1/2)^3+5*(1/2)^4+...+(2n-1)*(1/2)^(n+1),则
S(1/2)-(1/2)S(1/2)=(1/2)+2*(1/2)^2+2*(1/2)^3+...+2*(1/2)^n-(2n-1)*(1/2)^(n+1),化简得
(1/2)S(1/2)=-(1/2)+(1-(1/2)^n)/(1-(1/2))-(2n-1)*(1/2)^(n+1),
S(1/2)=-1+4-(1/2)^(n-2)-(2n-1)*(1/2)^n,
S(1/2)=3-(1/2)^(n-2)-(2n-1)*(1/2)^n,
所以S(1/2)