n^2/2n^2+1怎么化简成 1/2-1/2(2n^2+1)
问题描述:
n^2/2n^2+1怎么化简成 1/2-1/2(2n^2+1)
答
n^2/(2n^2+1)
= (1/2)* 2n^2/(2n^2+1)
= (1/2)* (2n^2+1-1)/(2n^2+1)
=(1/2)* [1 - 1/(2n^2+1)]
= 1/2-1/2(2n^2+1)
答
n^2/(2n^2+1)
=(n^2+1/2-1/2)/2(n^2+1/2)
=(n^2+1/2)/[2(n^2+1/2)]-(1/2)/[2(n^2+1/2)]
=1/2-(1/2)/(2n^2+1)
=1/2-1/2(2n^2+1)
答
n^2/(2n^2+1)=【1/2(2n^2+1)-1/2】/(2n^2+1)= 1/2-1/2(2n^2+1).
答
n^2/(2n^2+1)
=(n^2+1/2-1/2)/(2n^2+1)
=(n^2+1/2)/(2n^2+1)-(1/2)/(2n^2+1)
=1/2-1/2(2n^2+1)
答
=(n^2+1/2-1/2)/[2(n^2+1/2)]
=(n^2+1/2)/[2(n^2+1/2)]-(1/2)/[2(n^2+1/2)]
=1/2-(1/2)*1/(2n^2+1)
=1/2-1/[2(2n^2+1)]
答
应该是n^2/(2n^2+1)吧?
n^2/(2n^2+1)
=(2n^2)/[2(2n^2+1)]
=(2n^2+1-1)/[2(2n^2+1)]
=(2n^2+1)/[2(2n^2+1)]-1/[2(2n^2+1)]
=1/2-1/2·(2n^2+1)