一元二次方程的求解公式是怎么推导出来的?以前有人问过,但实在是看不懂,麻烦一步一步来,

问题描述:

一元二次方程的求解公式是怎么推导出来的?
以前有人问过,但实在是看不懂,麻烦一步一步来,

记住就行 管怎么来的干吗

我找了好久才找回这式子, ax^2+bx+c=0,
移项,得
ax^2+bx=-c
二次项系数化为1,得
x^2+(b/a)x=-(c/a)
配方
x^2+(b/a)+(b/2a)^2=-(c/a)+(b/2a)^2

[x+(b/2a)]^2=(b^2-ac)/(4a^2)
因为a不等于0,所以4a^2>0,式子b^2-4ac的值有三种情况:
(1)b^2-4ac>0
这时(b^2-4ac)/(4a^2)>0,由[x+(b/2a)]^2=(b^2-ac)/(4a^2)得
x+(b/2a)=+ -(根号b^2-4ac)/(2a)
方程有两个不相等的实数根
x1=(-b+根号b^2-4ac)/2a x2=(-b-根号b^2-4ac)/2a

如图

手机不好打符好,总之先记住,把四个二次记住,数形结和慢慢体会怎么推不重要,关建是使用,手机打的分要给我啊

ax²+bx+c=0 两边同时除以a x²+(bx/a)+c/a=0 两边加上配方项(b/2a)² x²+(bx/a)+(b/2a)²+c/a=(b/2a)² 左边是配好的完全平方式,并把c/a移到右边 (x+(b/2a))²=(b/2a)²-(c/a) 右...

一元二次方程为ax^2+bx+c=0,
化为x^2+b/ax+c/a=0
配方得(x+b/2a)^2=-c/a+b^2/ 4a^2
则x+b/2a=正负根号(-c/a+b^2/ 4a^2)
所以x=正负根号(-c/a+b^2/ 4a^2)-b/2a
=(-b加减根号(b^2-4ac))/a