已知关于x的多项式x^3+kx^2-x+3因式分解后有一个因式是x-1(1)求实数k的值;(2)将此多项式因式分解
问题描述:
已知关于x的多项式x^3+kx^2-x+3因式分解后有一个因式是x-1
(1)求实数k的值;
(2)将此多项式因式分解
答
(x^2+ax+b)(x-1)
=x^3-x^2+ax^2-ax+bx-b
=x^3+(a-1)x^2-(a-b)x-b
b=-3
a-b=1
a=-2
k=a-1=-3
(x^2-2x-3)(x-1)
=(x+1)(x-3)(x-1)
答
f(x) =x^3+kx^2-x+3
f(1) = 1+k-1+3 =0
k=-3
f(x) =x^3-3x^2-x+3
f(x) = (x-1) (x^2+ax -3)
coef. of x
-a-3 = -1
a= -2
f(x) = (x-1) (x^2-2x -3)
=(x-1)(x-3)(x+1)
答
设另一因式是Ax³+kx²-x+3=A(x-1)则x=1时,x-1=0所以右边是0所以左边也是0所以x=11+k-1+3=0所以k=-3原式=x³-x²-(2x²+x-3)=x²(x-1)-(2x+3)(x-1)=(x-1)(x²-2x-3)=(x-1)(x+1)(x-3)...