基本初等函数的导数公式推导
问题描述:
基本初等函数的导数公式推导
答
C'=0(C为常数函数
(x^n)'= nx^(n-1) (n∈Q*);熟记1/X的导数
(sinx)' = cosx
(cosx)' = - sinx
(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2
-(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2
(secx)'=tanx·secx
(cscx)'=-cotx·cscx
(arcsinx)'=1/(1-x^2)^1/2
(arccosx)'=-1/(1-x^2)^1/2
(arctanx)'=1/(1+x^2)
(arccotx)'=-1/(1+x^2)
(arcsecx)'=1/(|x|(x^2-1)^1/2)
(arccscx)'=-1/(|x|(x^2-1)^1/2)
(e^x)' = e^x
(Inx)' = 1/x
(logax)' =(1/x)*logae
①(u±v)'=u'±v' ②(uv)'=u'v+uv' ③(u/v)'=(u'v-uv')/ v^2