已知函数f(x)=2x-12|x|.(Ⅰ)若f(x)=2,求x的值;(Ⅱ)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.
问题描述:
已知函数f(x)=2x-
.1 2|x|
(Ⅰ)若f(x)=2,求x的值;
(Ⅱ)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.
答
(Ⅰ)当x≤0时f(x)=0,
当x>0时,f(x)=2x−
,1 2x
有条件可得,2x−
=2,1 2x
即22x-2×2x-1=0,解得2x=1±
,∵2x>0,∴2x=1+
2
,∴x=log2(1+
2
).
2
(Ⅱ)当t∈[1,2]时,2t( 22t−
)+m( 2t−1 22t
)≥0,1 2t
即m(22t-1)≥-(24t-1).∵22t-1>0,∴m≥-(22t+1).
∵t∈[1,2],∴-(1+22t)∈[-17,-5],
故m的取值范围是[-5,+∞).
答案解析:(I)当x≤0时得到f(x)=0而f(x)=2,所以无解;当x>0时解出f(x)=2求出x即可;
(II)由 t∈[1,2]时,2tf(2t)+mf(t)≥0恒成立得到,得到f(t)=2t−
,代入得到m的范围即可.1 2t
考试点:指数函数综合题.
知识点:本题主要考查了函数恒成立问题.属于基础题.恒成立问题多需要转化,因为只有通过转化才能使恒成立问题等到简化;转化过程中往往包含着多种数学思想的综合运用,同时转化过程更提出了等价的意识和要求.