3x²y-[2x²y-(2xyz-x²z)-4x²z]-xyz,其中x=-2 y=-3 z=1

问题描述:

3x²y-[2x²y-(2xyz-x²z)-4x²z]-xyz,其中x=-2 y=-3 z=1

3x²y-[2x²y-(2xyz-x²z)-4x²z]-xyz
=3x²y-(2x²y-2xyz+x²z-4x²z)-xyz
=3x²y-2x²y+2xyz-x²z+4x²z-xyz
=x²y+xyz+3x²z
=x(xy+yz+3xz)
=-2(6-3-6)
=6

去括号,合并同类项,提取公因式,化简为x2(y+3z)+xyz,带入数值,y+3z=0,结果为6

6

18

3x²y-[2x²y-(2xyz-x²z)-4x²z]-xyz=3x²y-(2x²y-2xyz+x²z-4x²z)-xyz=3x²y-2x²y+2xyz-x²z+4x²z-xyz=x²y+3x²z+xyz当x=-2 y=-3 z=1时,原式=(-2)&...

当x=-2 y=-3 z=1时
3x²y-[2x²y-(2xyz-x²z)-4x²z]-xyz=3x²y-2x²y+2xyz-x²z+4x²z-xyz=x²y+3x²z+xyz
=(-2)²×(-3)+3×(-2)²×1+(-2)×(-3)×1=-12+12+6=6