若x^3m=4,y^3n=5,求(x^2m)^3+(y^n)^3—x^2m·y^n·x^4m·y^2n的值
问题描述:
若x^3m=4,y^3n=5,求(x^2m)^3+(y^n)^3—x^2m·y^n·x^4m·y^2n的值
答
(x^2m)^3+(y^n)^3—x^2m·y^n·x^4m·y^2n
=16+2-16×5
=-59
关键在于(x^2m)^3=(x^3m)^2类似的互换
答
(x^2m)^3+(y^n)^3—x^2m·y^n·x^4m·y^2n
=(x^3m)^2+y^3n-x^6m*y^3n
=4^2+5-(x^3m)^2*5
=13-4^2*5
=13-80
=-67
答
(x^2m)^3+(y^n)^3-x^2m*y^n*x^4m*y^2n
=x^6m+y^3n-x^6my^3n
=(x^3m)^2+y^3n-(x^3m)^2*y^3n
=4^2+5-4^2*5
=-59