已知一个口袋中装有n个红球(n≥1,且n∈N)和2个白球,从中有放回的连续摸三次,每次摸出两个球若两个球的颜色不同则为中奖,否则不中奖.记三次摸球中(每次摸球后放回)恰有两次中奖的概率为P,则当n取多少的时候,P最大?

问题描述:

已知一个口袋中装有n个红球(n≥1,且n∈N)和2个白球,从中有放回的连续摸三次,每次摸出两个球
若两个球的颜色不同则为中奖,否则不中奖.记三次摸球中(每次摸球后放回)恰有两次中奖的概率为P,则当n取多少的时候,P最大?

设总球数a=n+2不中奖的概率P1=[(C 2 2)+(C n 2)]/(C a 2)=(n2-n+2)/(n2+3n+3),n属于[1,无穷)对P1求导,P1`=(2n-1)/(2n+3),所以,在(0,0.5)内,递减,[0.5,无穷)递增,又因为n属于[1,无穷),故P1在定义域内递...