证明:正数的几何平均值小于等于算术平均值n个正数的几何平均值小于等于这n个正数的算术平均值,仅当n个数相等时等号才成立.求证明思路.请注意,我需要当n大于2时候的证明
问题描述:
证明:正数的几何平均值小于等于算术平均值
n个正数的几何平均值小于等于这n个正数的算术平均值,仅当n个数相等时等号才成立.
求证明思路.
请注意,我需要当n大于2时候的证明
答
高2数学上 不是有么?照着看!
答
你上高几啊
高二数学书上有啊
答
用归纳法证明,当n=2时,显然有书的式子成立假设当n=k时,成立,则有(a1+a2+...+an)/n>=(a1a2...an)^1/n即(a1+a2+...+an)^n>=n(a1a2...an)现在只要证明到当n=k+1时成立即可当n=k+1时(a1+a2+...+an+a(n+1))^(n+1)=(a1+...
答
书上有