圆C通过不同的三点P(k,0)、Q(2,0)、R(0,1),已知圆C在点P处的切线斜率为1,试求圆C的方程.

问题描述:

圆C通过不同的三点P(k,0)、Q(2,0)、R(0,1),已知圆C在点P处的切线斜率为1,试求圆C的方程.

设圆C的方程为x2+y2+Dx+Ey+F=0,则k、2为x2+Dx+F=0的两根,∴k+2=-D,2k=F,即D=-(k+2),F=2k,又圆过R(0,1),故1+E+F=0.∴E=-2k-1.故所求圆的方程为x2+y2-(k+2)x-(2k+1)y+2k=0,圆心坐标为(k+22,2k+12...
答案解析:利用待定系数法,我们先设出圆C的一般方程,结合圆C通过不同的三点P(k,0)、Q(2,0)、R(0,1),我们易求出圆的方程(含参数k),又由圆C在点P处的切线斜率为1,结合切线与过切点的半径垂直,我们易构造关于k的方程,解方程即可求出k值,进而得到圆C的方程.
考试点:圆的一般方程.
知识点:本题考查的知识点是圆的一般方程,求圆的方程最常用的办法是待定系数法,即先设出方程,再利用其它已知条件,构造方程组,解方程组求出各参数,即可得到圆 的一般方程.