已知M,N都是正整数,并且A=(1-1/2)(1+1/2)(1-1/3)(1+1/3)...(1-1/m)(1+1/m),B=(1-1/2)(1+1/2)(1-1/3)(1+1/3)...(1-1/n)(1+1/n),证明:(1)A=(m+1)/2m,B=(n+1)/2n (2)A-B=1/26,求m和n的值.(2)问看不懂?
问题描述:
已知M,N都是正整数,并且A=(1-1/2)(1+1/2)(1-1/3)(1+1/3)...(1-1/m)(1+1/m),
B=(1-1/2)(1+1/2)(1-1/3)(1+1/3)...(1-1/n)(1+1/n),证明:(1)A=(m+1)/2m,B=(n+1)/2n (2)A-B=1/26,求m和n的值.
(2)问看不懂?
答
m=12 n=156
答
A=(1-1/2)(1+1/2)(1-1/3)(1+1/3)...(1-1/m)(1+1/m)
A=(1/2)*(3/2)*(2/3)*(3/4)*.......(m-1)/m*(m+1)/m=(m+1)/2m
2.A>B
A-B=B((1-1/n)(1+1/n)*..(1-1/m)(1+1/m)-1)=
(n+1)((m+1)/n-1)/2n=(n+1)(m+n-1)/2n^2
(n+1)(m+n-1)=26n^2
(n+1)(m+n-1)所以n假设(n+1)整除13,n=12 不满足题意
m+n-1整除13 因为m+n-1
答
A-B=1/26
=>1/m-1/n=1/13
mn = 13(n-m)
因为n > n-m
所以m 可求得
m=12 n=156