如图,一个表面涂满颜色的正方体,现将棱三等分,再把它切开变成若干个小正方体,两面都涂色的有______个;各面都没有涂色的有______个.
问题描述:
如图,一个表面涂满颜色的正方体,现将棱三等分,再把它切开变成若干个小正方体,两面都涂色的有______个;各面都没有涂色的有______个.
答
两面都涂色是中间那层,边上的部分共有12个
各面都没有涂色的只有最中间那个,所以只有一个.
故答案为:12;1.
答案解析:根据题意可知一共分成了18个小正方体,两面都涂色是中间那层,边上的部分共有12个,各面都没有涂色的只有最中间那个,所以只有一个.
考试点:认识立体图形.
知识点:本题考查认识立体图形关键是空间想象能力要强.