x+y=-5,xy=3,则-x^3y-xy^3+2x^2y^2等于

问题描述:

x+y=-5,xy=3,则-x^3y-xy^3+2x^2y^2等于

-x^3y-xy^3+2x^2y^2
=-xy(x²+y²-2xy)
=-xy(x²+y²+2xy-4xy)
=-xy[(x+y)²-4xy]
=-3×[(-5)²-4×3]
=-3×13
=-39

原式可化简为
xy(-x^2-y^2+2xy)
=xy(-x^2-y^2-2xy+4xy)
=xy(-(x+y)^2+4xy)
注:-x^2-y^2-2xy=-(x+y)
将1,2式代入得,
3*(-(-5)^2+4*3)
=-39