已知在△ABC中,A,B,C所对的边分别为a,b,c,A,B为锐角,且sinA=根号5/5,tanB=1/3(1)求A+B的值; (2)若a-b=根号2-1,求a,b,c的值
问题描述:
已知在△ABC中,A,B,C所对的边分别为a,b,c,A,B为锐角,且sinA=根号5/5,tanB=1/3
(1)求A+B的值; (2)若a-b=根号2-1,求a,b,c的值
答
tanA=1/2 tanB=/3
tan(A+B)= (tanA+tanB)/(1-tanA*tanB)
= (1/2 +1/3) (1-1/2*1/3)
= 1
A+B=45°
C=135°
sinA=√5/5 , sinB=√10/10
a-b=√2 -1
a=b+√2 -1
a/b=sinA/sinB=(b+√2 -1)/b
√10/ √5 = (b+√2 -1)/b
b=1
a= b+√2 -1=√2
c=b*sinC/sinB
=√2 /(√5/5)=√10