如图所示,在△ABC中,O是高AD和BE的交点,观察图形,试猜想∠C和∠DOE之间具有怎样的数量关系,并证明你的猜想结论.
问题描述:
如图所示,在△ABC中,O是高AD和BE的交点,观察图形,试猜想∠C和∠DOE之间具有怎样的数量关系,并证明你的猜想结论.
答
知识点:此类题目比较简单,解答此类题目要注意:
①求角的度数常常要用到“三角形的内角和是180°这一隐含的条件;
②三角形的外角通常情况下是转化为内角来解决.
答案解析:由于∠DOE是△AOE的外角,故∠DOE=∠OAE+∠AEO=∠OAE+90°=∠OAE+∠ADC,即∠C+∠DOE=∠OAE+∠ADC+∠C=180°.
考试点:三角形的外角性质;三角形内角和定理.
知识点:此类题目比较简单,解答此类题目要注意:
①求角的度数常常要用到“三角形的内角和是180°这一隐含的条件;
②三角形的外角通常情况下是转化为内角来解决.