求y=(e∧x)sinx的n阶导数 答案是y(n)=e∧x(sinx+sin(x+π/2)+…+s求y=(e∧x)sinx的n阶导数答案是y(n)=e∧x(sinx+sin(x+π/2)+…+sin(x+nπ/2))=e∧x((sinx+sin(x+nπ/2))+(sin(x+π/2)+sin(x+(n-1)π/2))+…)=2∧(n/2) e∧x sin(x+nπ/4)最后一步是怎么来的
问题描述:
求y=(e∧x)sinx的n阶导数 答案是y(n)=e∧x(sinx+sin(x+π/2)+…+s
求y=(e∧x)sinx的n阶导数
答案是y(n)=e∧x(sinx+sin(x+π/2)+…+sin(x+nπ/2))
=e∧x((sinx+sin(x+nπ/2))+(sin(x+π/2)+sin(x+(n-1)π/2))+…)
=2∧(n/2) e∧x sin(x+nπ/4)
最后一步是怎么来的
答
你这个解答第一步就是错的,但最后答案是对的.你令n=2试试,第一个等号后面对吗?
前面是错误解法,最后是正确答案,当然不知道最后一步是怎么来的了.
话说为什么要用这么纠结的方法来做呢?如果题目没有限制解法,我觉得还是欧拉公式来得方便: