已知f(x)=sin平方x+sinxcosx.x∈[0,pai/2]求f(x)的值域,若f(a)=5/6,求sin2a的值
问题描述:
已知f(x)=sin平方x+sinxcosx.x∈[0,pai/2]
求f(x)的值域,若f(a)=5/6,求sin2a的值
答
f(x)=(1/2)[(1-cos2x)+sin2x]
f(a)=5/6
sin2a-cos2a=2/3
sin2a-cos2a=√2sin(2a-π/4)
sin(2a-π/4)=√2/3
cos(2a-π/4)=√7/3 或 cos(2a-π/4)=-√7/3 (舍去)
sin2a=sin(2a-π/4)cosπ/4+cos(2a-π/4)sinπ/4
sin2a=(√2/2)(√2/3+√7/3) sin2a=(√2/2)(√2/3-√7/3)
2a0 或 π-2aπ/2 (舍去)
sin2a=1/3+√14/6
答
f(x)=(sinx)^2+sinxcosx=[cos(2x)-1]/2+sin(2x)/2=(1/2)[sin(2x)+cos(2x)]-1/2=(√2/2)sin(2x+π/4)-1/2x∈[0,π/2]2x+π/4∈[π/4,5π/4]sin(2x+π/4)∈[-√2/2,1]当sin(2x+π/4)=1时,f(x)有最大值f(x)max=(√2-1)/...