已知x、y、z、∈R,3x,4y,5z成等比数列.1/x,1/y,1/z成等差数列,则z/x+x/z=__我不太明白,请说清楚点,
问题描述:
已知x、y、z、∈R,3x,4y,5z成等比数列.1/x,1/y,1/z成等差数列,则z/x+x/z=__
我不太明白,请说清楚点,
答
34/15
答
设3x=4y=5z=R
答
(4*y)^2=3*x*5*z ,即16*y^2=15*x*z.
2*1/y=1/x+1/z=(x+z)/(x*z),即2/y=(x+z)/(x*z)
z/x+x/z
=(x^2+z^2)/(x*z)
=[(x+z)^2-2*x*z]/(x*z)
=(x+z)^2/(x*z)-2
=(x+z)^2*(x*z)/(x*z)^2-2
=(2/y)^2*(16*y^2/15)-2
=64/15-2
=34/15
答
16【y^2】=15xz为等式一
2/y=1/x+1/z为等式二,平方,将y^2的第一等式代入,
64/【15xz】=1/[x^2]+1/[z^2]+2/[xz]
得出34/15的结果