1/ 3*1+ 1/ 4*2 + 1/ 5*3+……+1/1999*1997 + 1/ 2000*1998

问题描述:

1/ 3*1+ 1/ 4*2 + 1/ 5*3+……+1/1999*1997 + 1/ 2000*1998

=1/2[(1-1/3)+(1/2-1/4)+(1/3-1/5)+(1/4-1/6)+...+(1/1997-1/1999)+(1/1998-1/2000)]
=1/2(1+1/2-1/1999-1/2000)

1/ 3*1+ 1/ 4*2 + 1/ 5*3+……+1/1999*1997 + 1/ 2000*1998
=1/2(1-1/3+1/2-1/4+1/3-1/5+...+1/1997-1/1999+1/1998-1/2000)
=1/2(1-1/1999+1/2-1/2000)
=1/2(1998/1999+999/2000)
=999/1999+999/4000

1/ 3*1+ 1/ 4*2 + 1/ 5*3+……+1/1999*1997 + 1/ 2000*1998
=1/2*(1-1/3+1/2-1/4+1/3-1/5+1/4-1/6...+1/1998-1/2000)
=1/2*(1+1/2-1/1999-1/2000)
=5993001/7996000