高中数学+化简(2cos10°-sin20°)/sin70°

问题描述:

高中数学+化简(2cos10°-sin20°)/sin70°

解答:
(2cos10°-sin20°)/sin70°
=[2cos(30°-20°)-sin20°]/sin70°
=(2cos30°cos20°+2sin30°sin20°)/sin70°
=(2cos30°cos20°)/cos20° (诱导公式sin70°=sin(90°-20°)=cos20°)
=2cos30°
=2*(√3/2)
=√3

(2cos10°-sin20°)/sin70°
=(2cos10°-sin20°)/cos20°
=[cos10°+(cos10°-cos70°)]/cos20°
=[cos10°+2sin40°*sin30°]/cos20°
=[cos10°+2*1/2*sin40°]/cos20°
=[cos10°+cos50°]/cos20 °
=2cos30°*cos20°/cos20°
=2cos30°
=√ 3