(1/2003-1)(1/2002-1)(1/2001-1)...*(1/1001-1)(1/1000-1)

问题描述:

(1/2003-1)(1/2002-1)(1/2001-1)...*(1/1001-1)(1/1000-1)

(1/2003-1)(1/2002-1)(1/2001-1)...*(1/1001-1)(1/1000-1)
=2002/2003*2001/2002*2000/2001*....*1000/1001*999/1000
=999/2003

1/2003-1=-2002/20031/2002-1=-2001/20021/2001-1=-2000/2001...1/1001-1=-1000/10011/1000-1=-999/1000因为共有2003-1000+1=1004个负数相乘,所以结果为正得:2002/2003×2001/2002×2000/2001×……×1000/1001×99...