如图,在直角三角形中有一个半圆,AC和BC这两条边都为4厘米,求阴影部分的面积(π取3.14).
问题描述:
如图,在直角三角形中有一个半圆,AC和BC这两条边都为4厘米,求阴影部分的面积(π取3.14).
答
4÷2=2(厘米)
2×2-3.14×22×
1 4
=4-3.14
=0.86(平方厘米)
答:阴影部分的面积是0.86平方厘米.
答案解析:如图所示:分别连接OD、OC、OE,则得到的四个等腰直角三角形的直角边是相等的,因此可以讲三角形OEB旋转到ODC的位置,三角形OAD旋转到OEC的位置,则得到一个正方形,因此阴影部分的面积就等于正方形的面积减去扇形ODE的面积,据此解答即可求解.
考试点:组合图形的面积.
知识点:解答此题的关键是:将两个阴影部分利用旋转的方法组合到一起,从而利用规则图形的面积差即可求解.