求∫(arcsinx)^2/√(1-x^2)

问题描述:

求∫(arcsinx)^2/√(1-x^2)

是∫(arcsinx)^2 /√(1-x^2) dx
∫(arcsinx)^2 /√(1-x^2) dx 注意d(arcsinx)=1/√(1-x^2)
=∫(arcsinx)^2 d(arcsinx)
= 1/3 * (arcsinx)^3 +C (C为常数)