六年级解方程X²-X_4=1/X-1/X²

问题描述:

六年级解方程X²-X_4=1/X-1/X²
-4

答:
x^2-x^(-4)=1/x-1/x^2
x^2-(1/x)^4=(x-1)/x^2
(x^6-1)/x^4=(x-1)/x^2
x^6-1=(x-1)x^2
(x^3-1)(x^3+1)=(x-1)x^2
(x-1)(x^2+x+1)(x^3+1)=(x-1)x^2
所以:
x-1=0或者(x^2+x+1)(x^3+1)=x^2
解得:x=1
x^5+x^2+x^4+x+x^3+1=x^2
x^5+x^4+x^3+1=0
(x+1)x^4+(x+1)(x^2-x+1)=0
(x+1)(x^4+x^2-x+1)=0
所以:
x+1=0或者x^4+x^2-x+1=0(此式不成立,恒大于0)
解得:x=-1
综上所述,x=-1或者x=1